Harvard Logic Colloquium: Joel Hamkins


Thursday, October 20, 2016, 4:00pm to 5:00pm


Logic Center, Room 420, 2 Arrow Street

Joel Hamkins (City University of New York): Recent Advances in Set-theoretic Geology

Set-theoretic geology is the study of the set-theoretic universe V in the context of all its ground models and those of its forcing extensions. For example, a bedrock of the universe is a minimal ground model of it and the mantle is the intersection of all grounds. In this talk, I shall explain some recent advances, including especially the breakthrough result of Toshimichi Usuba, who proved the strong downward directed grounds hypothesis: for any set-indexed family of grounds, there is a deeper common ground below them all. This settles a large number of formerly open questions in set-theoretic geology, while also leading to new questions. It follows, for example, that the mantle is a model of and provably the largest forcing-invariant definable class. Strong downward directedness has also led to an unexpected connection between large cardinals and forcing: if there is a hyper-huge cardinal k, then the universe indeed has a bedrock and all grounds use only k-small forcing.